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It follows that Vn splits into the direct sum of the one-dimensional T-invariant
subspaces ⟨un−k

1 uk
2⟩, k = 0, 1, . . . , n. Moreover, the corresponding subrepre-

sentations of T are pairwise nonisomorphic. By Theorem 2 of 4.1, every T-
invariant subspace of Vn is a linear span of a number of monomials un−k

1 uk
2 .

Now let W be an arbitrary nonnull SU2-invariant subspace of Vn. By the
foregoing discussion, W contains a monomial un−k

1 uk
2 . Pick any nondiagonal

matrix A0 ∈ SU2 and let it act on un−k
1 uk

2 . It is readily seen that the co-
efficient of un

1 in the form f0 = Φn(A0)un−k
1 uk

2 is different from zero. Since
f0 ∈ W and W is spanned by monomials, it follows that un

1 ∈ W .

Analogously, considering the form Φn(A0)un
1 , we remark that all its coeffi-

cients are different from zero. We thus conclude that all monomials belong
to W , i.e., W = Vn, which completes the proof.

Obviously

(8) Φn(−E) = (−1)nε.

Hence, −E belongs to the kernel of Φn if and only if n is even. For such
values of n the representation Φn of SU2 can be factored with respect to the
normal subgroup {E,−E}, thereby yielding an irreducible representation of
SO3 that we will denote by Ψn.

Thus, for each integer n ≥ 0 we have constructed an irreducible (n + 1)-
dimensional representation Φn of SU2, and for each even n ≥ 0, an irreducible
(n+1)-dimensional representation Ψn of SO3. In Section 11 we will show that
this is a complete list of the continuous irreducible complex representations
of the groups SU2 and SO3. (See also the Exercises in Section 8.)

Questions and Exercises
1. For arbitrary A,B ∈ SU2 put

R(A,B)X = AXB−1 (X ∈ H).

Show that R is a homomorphism of SU2 ×SU2 onto SO4, and find its kernel.

2.* Let P be the linear representation of SU2 constructed in 7.2. Construct
an explicit isomorphism of the representations PC and Φ2 of SU2.

3. Prove that any central function f on SU2 is uniquely determined by its
restriction to the subgroup

T =
{

A(z) =
(

z 0
0 z−1

)
| z ∈ C, |z| = 1

}
,

and that f(A(z)) = f(A(z−1)).
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4. Compute the restriction to T of the character χn of the representation Φn
of SU2.

5. Prove that the linear span of the functions

φn(z) = χn(A(z)) (z ∈ C, |z| = 1)

coincides with the space of all functions φ on the unit circle which can be
written as polynomials in z and z̄, and which satisfy the condition φ(z̄) =
φ(z).

6. Let f be a continuous central function on SU2. Show that
∫

SU2

f(x) dx =
2
π

∫ π

0
f(A(eit)) sin2 t dt.

8. Matrix Elements of Compact Groups
In this section we generalize the main theorems established in Chapter II for
finite groups to compact linear groups.

We shall consider only (continuous) complex linear representations. Recall
that every complex representation of a compact group is unitary, and hence
completely reducible (see Section 2).

8.1. Let X be a compact topological space on which integration is defined,
i.e., there is given a positive linear functional

f '→
∫

X
f(x) dx

on the space of continuous real-valued functions on X. We extend the integral
by linearity to continuous complex-valued functions. Specifically, if f = g+ih,
where g, h are continuous real-valued functions, we put

∫

X
f(x) dx =

∫

X
g(x) dx + i

∫

X
h(x) dx.

Now, in the space of continuous complex functions on X we define a Hermi-
tian inner product by the rule

(f1, f2) =
∫

X
f1(x)f2(x) dx.

We let C2(X) denote the resulting (generally speaking, infinite-dimensional)
Hermitian space.


