It follows that V_n splits into the direct sum of the one-dimensional **T**-invariant subspaces $\langle u_1^{n-k}u_2^k \rangle$, $k = 0, 1, \ldots, n$. Moreover, the corresponding subrepresentations of **T** are pairwise nonisomorphic. By Theorem 2 of 4.1, every **T**-invariant subspace of V_n is a linear span of a number of monomials $u_1^{n-k}u_2^k$.

Now let W be an arbitrary nonnull SU₂-invariant subspace of V_n . By the foregoing discussion, W contains a monomial $u_1^{n-k}u_2^k$. Pick any nondiagonal matrix $A_0 \in$ SU₂ and let it act on $u_1^{n-k}u_2^k$. It is readily seen that the coefficient of u_1^n in the form $f_0 = \Phi_n(A_0)u_1^{n-k}u_2^k$ is different from zero. Since $f_0 \in W$ and W is spanned by monomials, it follows that $u_1^n \in W$.

Analogously, considering the form $\Phi_n(A_0)u_1^n$, we remark that all its coefficients are different from zero. We thus conclude that all monomials belong to W, i.e., $W = V_n$, which completes the proof.

Obviously

(8) $\Phi_n(-E) = (-1)^n \varepsilon.$

Hence, -E belongs to the kernel of Φ_n if and only if n is even. For such values of n the representation Φ_n of SU₂ can be factored with respect to the normal subgroup $\{E, -E\}$, thereby yielding an irreducible representation of SO₃ that we will denote by Ψ_n .

Thus, for each integer $n \geq 0$ we have constructed an irreducible (n + 1)dimensional representation Φ_n of SU₂, and for each even $n \geq 0$, an irreducible (n+1)-dimensional representation Ψ_n of SO₃. In Section 11 we will show that this is a complete list of the continuous irreducible complex representations of the groups SU₂ and SO₃. (See also the Exercises in Section 8.)

Questions and Exercises

1. For arbitrary $A, B \in SU_2$ put

$$R(A,B)X = AXB^{-1} \qquad (X \in \mathbf{H}).$$

Show that R is a homomorphism of $SU_2 \times SU_2$ onto SO_4 , and find its kernel.

2.* Let P be the linear representation of SU_2 constructed in 7.2. Construct an explicit isomorphism of the representations $P_{\mathbf{C}}$ and Φ_2 of SU_2 .

3. Prove that any central function f on SU_2 is uniquely determined by its restriction to the subgroup

$$\mathbf{T} = \left\{ A(z) = \begin{pmatrix} z & 0\\ 0 & z^{-1} \end{pmatrix} \mid z \in \mathbf{C}, \ |z| = 1 \right\},\$$

and that $f(A(z)) = f(A(z^{-1}))$.

4. Compute the restriction to **T** of the character χ_n of the representation Φ_n of SU₂.

5. Prove that the linear span of the functions

 $\phi_n(z) = \chi_n(A(z)) \qquad (z \in \mathbf{C}, \, |z| = 1)$

coincides with the space of all functions ϕ on the unit circle which can be written as polynomials in z and \bar{z} , and which satisfy the condition $\phi(\bar{z}) = \phi(z)$.

6. Let f be a continuous central function on SU_2 . Show that

$$\int_{SU_2} f(x) \, dx = \frac{2}{\pi} \int_0^{\pi} f(A(e^{it})) \, \sin^2 t \, dt.$$

8. Matrix Elements of Compact Groups

In this section we generalize the main theorems established in Chapter II for finite groups to compact linear groups.

We shall consider only (continuous) *complex* linear representations. Recall that every complex representation of a compact group is unitary, and hence completely reducible (see Section 2).

8.1. Let X be a compact topological space on which integration is defined, i.e., there is given a positive linear functional

$$f \mapsto \int_X f(x) \, dx$$

on the space of continuous real-valued functions on X. We extend the integral by linearity to continuous complex-valued functions. Specifically, if f = g+ih, where g, h are continuous real-valued functions, we put

$$\int_X f(x) \, dx = \int_X g(x) \, dx + i \int_X h(x) \, dx.$$

Now, in the space of continuous complex functions on X we define a Hermitian inner product by the rule

$$(f_1, f_2) = \int_X f_1(x) \overline{f_2(x)} \, dx.$$

We let $C_2(X)$ denote the resulting (generally speaking, infinite-dimensional) Hermitian space.