It follows that V_{n} splits into the direct sum of the one-dimensional \mathbf{T}-invariant subspaces $\left\langle u_{1}^{n-k} u_{2}^{k}\right\rangle, k=0,1, \ldots, n$. Moreover, the corresponding subrepresentations of \mathbf{T} are pairwise nonisomorphic. By Theorem 2 of 4.1, every \mathbf{T} invariant subspace of V_{n} is a linear span of a number of monomials $u_{1}^{n-k} u_{2}^{k}$.
Now let W be an arbitrary nonnull SU_{2}-invariant subspace of V_{n}. By the foregoing discussion, W contains a monomial $u_{1}^{n-k} u_{2}^{k}$. Pick any nondiagonal matrix $A_{0} \in \mathrm{SU}_{2}$ and let it act on $u_{1}^{n-k} u_{2}^{k}$. It is readily seen that the coefficient of u_{1}^{n} in the form $f_{0}=\Phi_{n}\left(A_{0}\right) u_{1}^{n-k} u_{2}^{k}$ is different from zero. Since $f_{0} \in W$ and W is spanned by monomials, it follows that $u_{1}^{n} \in W$.
Analogously, considering the form $\Phi_{n}\left(A_{0}\right) u_{1}^{n}$, we remark that all its coefficients are different from zero. We thus conclude that all monomials belong to W, i.e., $W=V_{n}$, which completes the proof.

Obviously

$$
\begin{equation*}
\Phi_{n}(-E)=(-1)^{n} \varepsilon . \tag{8}
\end{equation*}
$$

Hence, $-E$ belongs to the kernel of Φ_{n} if and only if n is even. For such values of n the representation Φ_{n} of SU_{2} can be factored with respect to the normal subgroup $\{E,-E\}$, thereby yielding an irreducible representation of SO_{3} that we will denote by Ψ_{n}.
Thus, for each integer $n \geq 0$ we have constructed an irreducible $(n+1)$ dimensional representation Φ_{n} of SU_{2}, and for each even $n \geq 0$, an irreducible $(n+1)$-dimensional representation Ψ_{n} of SO_{3}. In Section 11 we will show that this is a complete list of the continuous irreducible complex representations of the groups SU_{2} and SO_{3}. (See also the Exercises in Section 8.)

Questions and Exercises

1. For arbitrary $A, B \in \mathrm{SU}_{2}$ put

$$
R(A, B) X=A X B^{-1} \quad(X \in \mathbf{H})
$$

Show that R is a homomorphism of $\mathrm{SU}_{2} \times \mathrm{SU}_{2}$ onto SO_{4}, and find its kernel.
2.* Let P be the linear representation of SU_{2} constructed in 7.2. Construct an explicit isomorphism of the representations $P_{\mathbf{C}}$ and Φ_{2} of SU_{2}.
3. Prove that any central function f on SU_{2} is uniquely determined by its restriction to the subgroup

$$
\mathbf{T}=\left\{A(z)=\left(\begin{array}{ll}
z & 0 \\
0 & z^{-1}
\end{array}\right)|z \in \mathbf{C},|z|=1\}\right.
$$

and that $f(A(z))=f\left(A\left(z^{-1}\right)\right)$.
4. Compute the restriction to \mathbf{T} of the character χ_{n} of the representation Φ_{n} of SU_{2}.
5. Prove that the linear span of the functions

$$
\phi_{n}(z)=\chi_{n}(A(z)) \quad(z \in \mathbf{C},|z|=1)
$$

coincides with the space of all functions ϕ on the unit circle which can be written as polynomials in z and \bar{z}, and which satisfy the condition $\phi(\bar{z})=$ $\phi(z)$.
6. Let f be a continuous central function on SU_{2}. Show that

$$
\int_{\mathrm{SU}_{2}} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f\left(A\left(\mathrm{e}^{i t}\right)\right) \sin ^{2} t d t
$$

8. Matrix Elements of Compact Groups

In this section we generalize the main theorems established in Chapter II for finite groups to compact linear groups.
We shall consider only (continuous) complex linear representations. Recall that every complex representation of a compact group is unitary, and hence completely reducible (see Section 2).
8.1. Let X be a compact topological space on which integration is defined, i.e., there is given a positive linear functional

$$
f \mapsto \int_{X} f(x) d x
$$

on the space of continuous real-valued functions on X. We extend the integral by linearity to continuous complex-valued functions. Specifically, if $f=g+i h$, where g, h are continuous real-valued functions, we put

$$
\int_{X} f(x) d x=\int_{X} g(x) d x+i \int_{X} h(x) d x .
$$

Now, in the space of continuous complex functions on X we define a Hermitian inner product by the rule

$$
\left(f_{1}, f_{2}\right)=\int_{X} f_{1}(x) \overline{f_{2}(x)} d x
$$

We let $C_{2}(X)$ denote the resulting (generally speaking, infinite-dimensional) Hermitian space.

